Study on the effectiveness of anomaly detection for spam filtering
نویسندگان
چکیده
Spam has become an important problem for computer security because it is a channel for spreading threats, including computer viruses, worms and phishing. Currently, more than 85% of received emails are spam. Historical approaches to combating these messages, including simple techniques such as sender blacklisting or using email signatures, are no longer completely reliable on their own. Many solutions utilise machine-learning approaches trained with statistical representations of the terms that usually appear in the emails. Nevertheless, these methods require a time-consuming training step with labelled data. Dealing with the limited availability of labelled training instances slows down the progress of filtering systems and offers advantages to spammers. In this paper, we present a study of the effectiveness of anomaly detection applied to spam filtering, which reduces the necessity of labelling spam messages and only employs the representation of one class of emails (i.e., legitimate or spam). This study includes a presentation of the first anomaly based spam filtering system, an enhancement of this system that applies a data reduction algorithm to the labelled dataset to reduce processing time while maintaining detection rates and an analysis of the suitability of choosing legitimate emails or spam as a representation of normality. 2014 Elsevier Inc. All rights reserved.
منابع مشابه
Moving dispersion method for statistical anomaly detection in intrusion detection systems
A unified method for statistical anomaly detection in intrusion detection systems is theoretically introduced. It is based on estimating a dispersion measure of numerical or symbolic data on successive moving windows in time and finding the times when a relative change of the dispersion measure is significant. Appropriate dispersion measures, relative differences, moving windows, as well as tec...
متن کاملGeological noise removal in geophysical magnetic survey to detect unexploded ordnance based on image filtering
This paper describes the application of three straightforward image-based filtering methods to remove the geological noise effect which masks unexploded ordnances (UXOs) magnetic signals in geophysical surveys. Three image filters comprising of mean, median and Wiener are used to enhance the location of probable UXOs when they are embedded in a dominant background geological noise. The study ar...
متن کاملAn Effective Model for SMS Spam Detection Using Content-based Features and Averaged Neural Network
In recent years, there has been considerable interest among people to use short message service (SMS) as one of the essential and straightforward communications services on mobile devices. The increased popularity of this service also increased the number of mobile devices attacks such as SMS spam messages. SMS spam messages constitute a real problem to mobile subscribers; this worries telecomm...
متن کاملA New Hybrid Approach of K-Nearest Neighbors Algorithm with Particle Swarm Optimization for E-Mail Spam Detection
Emails are one of the fastest economic communications. Increasing email users has caused the increase of spam in recent years. As we know, spam not only damages user’s profits, time-consuming and bandwidth, but also has become as a risk to efficiency, reliability, and security of a network. Spam developers are always trying to find ways to escape the existing filters therefore new filters to de...
متن کاملA Novel Hybrid Approach for Email Spam Detection based on Scatter Search Algorithm and K-Nearest Neighbors
Because cyberspace and Internet predominate in the life of users, in addition to business opportunities and time reductions, threats like information theft, penetration into systems, etc. are included in the field of hardware and software. Security is the top priority to prevent a cyber-attack that users should initially be detecting the type of attacks because virtual environments are not moni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Inf. Sci.
دوره 277 شماره
صفحات -
تاریخ انتشار 2014